15 декабря 2025

eur = 93.56 0.62 (0.67 %)

btc = 89 553.00$ - 638.15 (-0.71 %)

eth = 3 118.47$ 3.97 (0.13 %)

ton = 1.56$ -0.04 (-2.77 %)

usd = 79.73 0.39 (0.49 %)

eur = 93.56 0.62 (0.67 %)

btc = 89 553.00$ - 638.15 (-0.71 %)

Нейросеть оживила портрет Достоевского

2 минуты на чтение
Нейросеть оживила портрет Достоевского

Российские разработчики представили алгоритм на основе сверточной нейросети, который умеет превращать статичные портреты в анимированное изображение. Их система снимает маску с лица человека на отдельных кадрах из видео, после чего переносит их на отдельные изображения лиц, причем алгоритм может работать даже с одиночным изображением, в том числе с портретами. Описание работы алгоритма доступно в препринте, опубликованном на arXiv.org.

Нейросеть оживила портрет Достоевского

Egor Zakharov et al. / arXiv, 2019

Перенос информации между двумя изображениями или видео — задача не из простых. Например, при наложении стороннего аудиоряда на видео с говорящим человеком необходимо точно проследить за тем, чтобы мимика говорящего соответствовала тому, что он произносит. Здесь разработчики уже добились значительных успехов, во многом благодаря большому количеству собранных и размеченных для обучения данных и построенных на них моделях. Проблема состоит в том, что очень частно за основу берутся несколько тысяч целевых изображений (например, кадров из видео) какого-то конкретного предмета или человека, что позволяет «настроить» изображение-источник только на основе его. В идеале подобные системы не должны быть ориентированы на какой-то конкретный объект и должны быть способны использовать в качестве цели (то есть тех изображений, информацию с которых необходимо перенести) минимальное количество кадров.

Упростить задачу переноса информации с видео на статичное изображение решили разработчики из Samsung и «Сколково» под руководством Егора Захарова. В основе их подхода — алгоритм, который обучен на большом количестве кадров, содержащих лица людей. На каждое лицо на таком кадре наложена специальная маска, которая обозначает границы и базовую мимику. То, как такая маска соотносится с исходным кадром, хранится в виде вектора, данные из которого используются для того, чтобы наложить отдельную маску на изображение человека, после чего готовое изображение сравнивается с ground truth.

Нейросеть оживила портрет Достоевского


Такая модель в итоге позволила разработчикам переносить информацию между двумя объектами с помощью всего одного или нескольких кадров: для конечного продукта берется изображение-источник и изображение-цель, из которого формируется маска, которая затем накладывается на источник, причем необходимо для этого всего несколько кадров. Интересно, что таким образом можно не только изменить мимику человека на портрете, но и превратить его в анимированное изображение.

В результате у разработчиков получился алгоритм, который может достоверно переносить информацию между изображениями, создавая в итоге «говорящие головы»: при этом для этого не нужно использовать большое количество примеров изображения-источника и изображения-цели.

Что-то похожее на новый алгоритм в декабре представили американские разработчики: их модель может оживлять статичные изображения человека целиком, заставляя его выбегать за пределы кадра.

Елизавета Ивтушок Источник

Читать первым в Telegram-канале «Код Дурова»

Сейчас читают
Редакция рекомендует
Глоссарий Telegram: 200+ терминов и функций мессенджера
Глоссарий Telegram: 200+ терминов и функций мессенджера

Глоссарий Telegram: 200+ терминов и функций мессенджера

Гайд по Telegram: справочник терминов и функций

Читать
Карьера
Блоги 459
OTP Bank
билайн
Газпромбанк
Т-Банк
МТС
X5 Tech
Сбер
Яндекс Практикум
Ozon Tech
Циан

Пользуясь сайтом, вы соглашаетесь с политикой конфиденциальности
и тем, что мы используем cookie-файлы